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 The production of reactive oxygen species (ROS) can alter 

macromolecules in living organisms and can result in a wide range 

of injuries. Recently, oxidative stress has been known as a key 

mechanism in insulin resistance. Today, oxidative stress (OS) 

status assessment is performed using circulating markers such as 

malondialdehyde (MDA), superoxide dismutase (SOD) and 

glutathione peroxidase (GPX). Polycystic ovary syndrome (PCOS) 

with a prevalence of 4-12 % is the most common endocrine-

metabolic disorder in the reproductive age of women. PCOS is now 

recognized as an important metabolic disorder. Insulin resistance 

(IR) independent of obesity in PCO women has been identified as 

a predisposing factor for type2 diabetes and cardiovascular disease 

(CVD). Oxidative stress index is strongly associated with PCOS. 

The role of oxidative stress is very important but not considered 

but it plays an important role in the development of IR. In this mini 

review, we presented a viewpoint about the key role of brain̕s 

IR/OS in the brain-ovarian axis in the women with PCOS. These 

review articles helps us to better understanding of the PCO etiology 
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1. Introduction 
1.       Polycystic ovary syndrome (PCOS) 

This syndrome is associated with endocrine/metabolic disorders and infertility. Its prevalence is 

4-12% in women of reproductive age (1). In Iran, the prevalence of this syndrome has been 

reported from 7.1 to 14.6 (2). PCOS is heterogeneous in clinical signs and the anovulation in 

these women is the main cause of infertility. The anovulation accounts approximately 75% of 

infertility in these women (3). In the childhood, early puberty, in adolescence hirsutism, 

menstrual disorder and, after post-adolescence with infertility and glucose intolerance and 

finally in middle age is associated with diabetes mellitus, cardiac vascular disordes (CVD) and 

blood pressure (BP). PCOS etiology is still unknown. The cause of this syndrome can be the 

complex pathology with endocrine/metabolic dysfunction in the two brain axes: hypothalamus-

pituitary-adrenal (HPA) and gonadal (HPG).  The metabolic pathways in ovary like: steroids 

and gonadotropin regulators, glucose metabolism regulators, adipose signaling and important 

insulin signaling pathways that all of them are destroyed in this syndrome (4). Polycystic ovary 

mophology (PCOM) is one of the most valuable clinical finding in this chronic syndrome. These 

morphological changes were first described by Chereau in 1844 (5). Diagnostic criteria for this 

syndrome have been established by the European Society for Human Reproduction and 

Embryology (ESHRE) and the American Society for Reproduction and Infertility (ASRM) in 

2003, based on extensive studies over the past several decades with the so-called Rotterdam 

criteria (6). Some researchers doubt whether this syndrome is an evolutionary paradox or a 

sexual conflict, which may be related to heredity, environmental factors and even intra-fetal 

factor or factors (7). As a syndrome, PCOS is also treated on the basis of precise clinical 

symptoms, and therapies mainly include ovulation induction, lowering the levels of androgen, 

luteinizing hormone (LH), insulin resistance, and surgery (8). The assisted reproductive 

technologies (ART) method is another method (in vitro oocyte maturation) for infertile patients 

with PCO. 

2. Oxidative Stress (OS) 

Oxidative stress is an important factor for the instability at intracellular homeostasis.   Any factor 

or many conditions can lead to the production of reactive oxygen species (ROS) which is called 

oxidative stress. In the normal cells, there must be a relative balance between prooxidants and 

antioxidants for internal stability. Disruption of this balance can lead to oxidative stress by 

increasing prooxidants or decreasing antioxidants, so that prolonged these imbalance can easily 

cause serious injury for normal cells (9). 

     2.1. Oxidants  

Oxidation is a chemical process for destroying the electrons of an atom or molecule that can be 

critical (10). Oxidants are chemical compounds that produce molecular oxygen (prooxidants) 

that must be neutralized by antioxidants. The cell can tolerate oxidative stress to a limited extent, 

but in severe status, damaged cell membrane may cause a pathological complications with the 

impaired of cell homeostasis (11). 

Todays, antioxidants are used as chemical prophylaxis for inhibiting of the free radicals (12).  

2.2. Free radicals 

Free radicals can easily enter in the chemical reaction via sharing of their single electrons. 

Oxygen free radicals are the most invasive agents in the biological systems that can damage the 

chain pathways. These agents are generally known as "reactive oxygen species" (ROS). ROS 

contains free and non-free radical oxygen molecules that are involved in the generation of 

oxidative stress (13). Oxidative stress by overproducing reactive oxygen species and 

accumulating them during environmental stress can even damage the crop and reduce the quality 

and quantity of the crop, even in plant products. The production of reactive oxygen species as a 

determining factor can cause lipid peroxidation, inactivation of enzymes and oxidative damage 

of cellular DNA. The main site of free radical production is mitochondry (14). 

2.3. Mitochondria and oxidative stress  
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The critical role of mitochondria in cell energy homeostasis is crucial, so they are involved in 

biogenetic processes including: insulin signaling, cell survival control, and also the major site of 

ROS production in the cell during respiratory reactions for their intracellular respiratory chain. 

Thus, abnormalities in the mitochondria function can be highly linked to the progress of 

peripheral IR (15, 16). Mitochondrial-ROS (mtROS) producing plays an important role in the 

release of pro-apoptotic proteins such as cytochrome-c to produce of caspase initiation and 

apoptosis. Therefore, there is evidence for the direct relationship between mitochondria, 

oxidative stress, and cell death (17). In addition, mitochondria-ROS producing during cellular 

metabolism can be generated in response to various environmental stimuli including: growth 

factors, inflammatory cytokines, ionizing radiation, UV, chemical oxidants, chemotherapy, 

hyperoxia, toxins and metals (18).  Apart from the traditional role of mitochondria in metabolic 

processes and ROS signaling it has been dynamically implicated ininnate immunity (19). 

''Recently, it has become clear that some innate immune cells are epigenetically reprogrammed 

or “imprinted” by past experiences. These “trained” innate immune cells display altered 

inflammatory responses upon subsequent pathogen encounter'' (20). The reactive oxygen species 

in mithochondria (mtROS) as the signaling molecules can drive production of the inflammatory 

cytokine and T cell activation. Increasing of mtROS level can lead to autoimmune diseases, 

CVD, cancers (21). Findings from recent decades show that dysfunction of the endothelial cell 

by inflammatory and oxidative stress can be associated with the pathogenesis of diabetes for 

development of premature atherosclerosis. Therefore, antioxidants can be effective role in 

suppressing of the inflammatory cytokines secration in the human coronary artery endothelial 

cells (22).   

 

 

     2.4. Antioxidants      

Antioxidants must be control the autoxidation by disconnecting the transmission of free radicals 

or by preventing of the formation of free radicals for reduction of oxidative stress, improve the 

immunity function, and ultimately, extend lifespan (23). Antioxidants are generally the chemicals 

for assessment of the oxidative stress status that can be divided into reactive oxygen species, 

ROS diluents or antioxidant chemicals and transcription factors regulating ROS production. It is 

difficult to evaluate oxidative stress in different diseases by similar markers or biomarkers 

because the markers used in a particular disease are limited and must always be carefully filtered 

(14). They contain a variety of antioxidants as counter-attacking agents on both sides of their 

membranes. In the physiological response, the body must be able to defend itself against 

oxidative stress through two physical and chemical processes. 

Physical defense is the limiting of the free radicals activity in their production sites within the 

cell. Enzymes that can neutralize the dangerous forms of reactive oxygen are considered the 

physical defense. Enzymatic and non-enzymatic antioxidants defense shows a serious role in the 

preserving of normal ROS levels. Vitamin A, C and E can disrupt the primary chain reactions by 

giving electrons to free radicals (24). DNA care is another of the body's intracellular defenses 

against oxidative damage. Although the complex stress responses with proteins and cell 

membranes can trigger the process of cell suicide (apoptosis) (25). One of the cellular oxidative 

damages is DNA damage and cytotoxicity; so many studies are under way to develop new 

methods and strategies in the prevention and treatment of cancer. However, the variations of the 

mitochondrial genome and dysfunction have been increasingly recognized as a significant donor 

in PCOS, CVD and cancer. For example, the mitochondrial DNA mutations can be the other 

target of assesments on PCOS heritability (26).  

    2.5. How does oxidative stress profile? 

Today, the relationship between oxidative stress and chronic diseases such as: cardiovascular 

disease (CVD) (27), type2 diabetes (28), psychological disease (29), cancer (30), PCOS (31), 

Alzheimer (32), Multiple sclerosis (MS) (33) and other diseases have been identified. 

Many different components and factors that produced in oxidative stress can be investigated. 

This assessment is called Oxidative Stress Index (OSI). This index is a new strategy for 
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represents the oxidative stress status in the disease process. OSI is beneficial for 

investigation and management in clinical medicine (34). So, several indexes have been 

suggested for measuring of OS in humans includes: Oxidative Stress Index (OSI), Oxidative 

Stress Score (OSS), Glutathione Ratio (GSSG/GSH), Tiol Ratios (-SH/TT, -SS/-SH, and-

SS/TT), and OXY-index (35). All of oxidative stress index parameters are significantly 

higher in women with PCOS than controls. Also, fetuin-A levels as an indicator for IR in 

serume of PCO patients is higher in the PCOS group than control (36, 37). 

3. Polycystic ovary syndrome (PCOS) and oxidative stress (OS) 

Polycystic ovary syndrome (PCOS) as a chronic heterogeneous disease is often associated 

with insulin resistance (IR), hyperandrogenism, chronic inflammation and oxidative stress 

(OS) (4). Many studies have shown that the level of operating system of oxidative stress in 

PCO women is significantly higher than normal subjects. This assessment of the oxidative 

stress status has been performed by using of circulating markers of PCO wome such as 

malondialdehyde (MDA) in serum and erythrocyte (38) are higher than normal women. 

Superoxide dismutase (SOD) in serum, erythrocyte and follicular floid (39) is higher than 

normal like Xanthine oxidase (XO) in serum of these patients (40). But glutathione 

peroxidase (GPX) (41) and 8-Hydroxydeoxyguanosine (8-OHdG) in serm of women with 

PCO are lower than normal women (42). These markers are suitable for assessment of 

oxidative stress in PCOS (43). The levels of operating system of the oxidative stress are 

significantly associated with factors such as obesity (44), insulin resistance (IR) (45), 

androgens (46), and chronic inflammation (47). Studies of the last two decades show that 

reactive oxygen species (ROS) in follicular fluid, granulose and mononuclear cells (48, 49), 

total oxidant status (TOS) and finally oxidative stress index (OSI) in serum of PCO women 

are higher than normal women (50, 51).  

Although oxidative stress has been recognized as a potential motive in polycystic ovarian 

pathology, it is still unclear whether abnormal oxidative stress levels in patients with PCOS 

are the cause of this syndrome or are directly related to its potential complications? 

3.1. Relationship between polycystic ovary syndrome (PCOS) and oxidative stress 

(OS)  

3.1.1. Sympathetic nervous system (SNS), PCOS and OS:     

There are many factors between the complications of PCOS and the hyperactivity of the 

SNS (52). The anatomical findings in animals (53) and humans (54) confirm an increase of 

the chatecolamine nerve fibers in the ovaries. One of the most potent markers for the SNS 

activity is nerve grough factor (NGF). Dissen et al. showed that the ovarian NGF is higher 

than normal subjects in the modeling mice and women with PCO (55) but serum NGF was 

significantly lower in these women (56). Kishi et al. (2012) reported that oxidative stress in 

the brain is an important factor for regulating of SNS activity and therefore, this is can be 

the major cause of hypertension (57). PCOS is associated with 1) metabolic disorders (58), 

2) the high risk of cardiovascular disease (CVD) (59) and 3) diabete in the context of 

overactivity of SNS (4). The hyperactivity of SNS in both PCOS and metabolic syndrome 

(MetS) are associated with the involvement of two ADR-α2 (60) and ADR-β2 (61).  

The role of central noradrenaline (NA) is very important in the brain-ovary axis. Cerebral 

NA originates from the Locus coeruleus (LC) neucleus as the smallest neucleus in the 

midebrain organization. LC is the important site for the largest accumulation of NA neurons 

that adjacent to the fourth ventricle in the brain bridge or pontine. Our study in 2012 showed 

that chemical degradation of the LC neucleus in the PCO modeling rats changes the follicle̕s 

morphology. These morphologic polycystic ovary (PCOM) changes included a small size 

of antral follicles and hypertocosis (enlarged thecal cells) (62). Another important role of 

NA in the brain-ovary axis is control of LH surge. LH surge is begun by a dramatic 

elevation of estradiol production by the preovulatory follicle. The LH surge stimulates the 

luteinization process in granulosa cells and also stimulates the synthesis of progesterone 

responsible to the midcycle FSH surge. LH hypersecretion in PCO women is probably due 

to enhanced sensitivity of pituitary to gonadotropin releasing hormone (GnRH) or changes 
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in pattern of GnRH secretion. Therefore, changed production of sex steroid, metabolic 

dysfunction, and obesity could be all contribute to the changes in the pattern of LH secretion 

(63). Changes in LH surge pattern in brain-ovary axis and elevated level of NA metabolites 

in the urine of women with PCO suggest an overactivity of SNS that has been demonstrated 

in animal and human studies (64). By increasing the activity of ovarian SNS, catecholamine 

homeostasis is altered and leads to a selective down-regulation of beta-adrenoceptor at the 

level of interestitial cells in thecal layer and suppresses the activity of this   adrenoceptor in 

the ovary (65).   

The insulin signaling pathway as a metabolic process in PCOS is directly related to the 

level of SNS activity.  Desai and et al in 2014, reported that lipid peroxidation (MDA) and 

total antioxidant capacity (TAC) as indicators of antioxidant status with fasting blood 

glucose, insulin, and uric acid in non-obese patients with PCO accompanied significant 

changes in both study and control groups (66). Bañuls et al in 2017 suggested that 

polycystic ovary syndrome is associated with insulin resistance, which can also lead to 

metabolic syndrome (MetS). Therefore, oxidative stress and leukocyte-endothelium 

interactions are PCOS-dependent and thus their results support this hypothesis that there is 

a correlation between metabolic changes, increased ROS production, endoplasmic 

reticulum stress, and leukocyte-endothelium interactions in PCOS that ofcourse all of these 

events can lead to cardiovascular complications (67).   

3.1.2. Insulin resistance (IR), PCOS and OS: 

Insulin resistance (IR) was first introduced in 1960 by Dr. Yalo and Bresson.  

IR is a metabolic state with too much insulin production against the normal response, 

because insulin sensitivity reduces under such conditions. Then this resistance can reduce 

the insulin response to the all of metabolic effects in the body. One of the most important 

features of PCOS is type2 diabetes with IR, which is associated with obesity and CVD (68). 

Insulin in the brain performs metabolic, neurotropic, neuromodulatory and neuroendocrine 

functions. Energy homeostasis is one of the important metabolic and neuromodulatory 

functions of brain̕s insuline (69). Insulin is a potent neuromodulator in the energy 

homeostasis and studies have shown that injecting of insulin antibody into the intermedia 

nucleus of the rat̕s hypothalamus causes overeating and obesity (70, 71). In this brain 

response, insulin supplies intracerebral energy and then stores it into neurons. This energy 

production pathway is accompanied by activation of ADR- β and the detachment or 

extrusion of glucose from glycogen stores of brain glial cells that occur within astrocytes. 

Then, by converting astrocytic glycogen into glucose, the glucose is stimulated by insulin 

via glucose carrier (GLUT1) and transferred to the extracellular fluid. This glycogen is 

actually an additional source of energy for the neurons which is dependent on the SNS. 

These results indicate 1) sensitivity rate of brain tissue to the both glucose and insulin and 

2) an important role of NA on homeostasis processes (72). IR in the obese PCO women can 

disrupt the synthesis of androgens or through the adipocytokines can directly or indirectly, 

affect on the brain-ovarian axis. Therefore, it affects on the hypothalamic secretion and the 

peripheral metabolism of steroids (73). Studies have shown that CVD (74), diabetes (75), 

sleep apnea or respiratory arrest (76), polycystic ovary syndrome (77, 42), and metabolic 

syndrome (78) are all associated with the overactivity of SNS (79). A meta-analysis of 

PCOS confirms the presence of PCOS-related insulin resistance (IR) and metabolic 

syndrome in non-obese patients (80) and obese women (81). 

3.1.3. Hyperandrogenism, PCOS and OS 

Hyperandrogenism is a prominent feature of PCOS. Testosterone level in women with PCO 

is usually higher than normal women. Codner's hypothesis in 2009, was based on the 

prevalence of type1 diabetes in patients with PCO which; both ovaries and adrenals are 

exposed to high androgen and insulin levels and the PCO is a frequent complaint of the 

women with Type1 diabetes (82). The abnormal gonads̕ steroidogenic activity that observes 

in patients with PCO is due to the high level of androgen in the ovaries that inhibits 

follicular maturation and helps to the negative process in ovulation. Hyperandrogenemia 
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itself can cause the desensitization of hypothalamous response to progesterone/estrogen 

negative feedback system which; further increases the secretion of GnRH and ovarian 

androgen production (83). 

Studies in the culture medium show that, steroidogenesis activity of single cells in PCO 

women is higher than in the control group. Increased levels of androgen secretion increased 

the activity of the enzymes after repeatedly culturing the cells. Thus, this hyperandrogenism 

produced the combination of testosterone, such as β3-hydroxy dehydrogenase, CYP17 and 

CYP11A (73). Hyperandrogenism and oxidative stress are associated in PCOS (49), but we 

do not know whether the hyperandrogenism can activate oxidative stress in PCO women 

or not.  

4. Metabolic syndrome and oxidative stress 

Reproductive and metabolic disorders are associated with PCOS. These disorders are more 

common in obese people. Reports suggest that metabolic syndrome, similar to PCOS, is 

associated with insulin resistance (IR). IR may be a suitable central and peripheral stimuls 

for the other disorders in the two syndromes (74, 80). IR can via overproducing of insulin, 

can reduce the capacity of beta cells and predispose the patient to type2 diabetes. IR may 

also damages insulin-sensitive organs, including liver and kidney. The hyperinsulinemia 

reflex can transmit triglycerides from the liver into the bloodstream, thereby lowering HDL 

and increasing LDL cholesterol levels. Dyslipidemia (HDL/LDL imbalance) as one of the 

factors of metabolic syndrome can easily increase the risk of CVD by free radical invasion 

especially in the case of triglycerides, because it has not been neutralized via antioxidants. 

As a result, this imbalance between oxidants and antioxidants can lead to lipid peroxidation 

under oxidative stress, and may be an effective factor in the development of atherosclerosis 

and CVD risk (coronary artery disease, stroke, and peripheral vascular disease) (81).  

 

 

Mitochondria and ATP/NA in ovary 

The electron transport chain activity products are both mtROS and adenosine 5'-triphosphate 

(ATP) which ATP as a major intracellular energy (powerhouse) basis is an excitatory 

cotransmitter for the autonomic nerves system (ANS). ATP through oxidative 

phosphorylation is colocalized with NA in the vesicles of synaptic̕s cleft at the 

postganglionic sympathetic nerves (27). The ratio of ATP to NA differs between different 

sympathetic nerve fibers. These nerves change through growth and in some pathological 

conditions, like hypertension. ATP as a cotransmitter and NA have a synergistic actions in 

the postjunctional (28). 

Intercellular messengers (para-crine-signaling) are very critical in ovarian physiology for 

follicugenesis and streiogenesis. The purinergic system (ATP) is one of the vital intra-

ovarian modulator, because it can regulate proliferation, steroidogenesis and apoptosis 

processes in the response to gonadotropic hormones (GnRH) (29). Several P2 receptors 

with essential roles have been found in the ovary. Wang and et al., (2015) showed P2X7 

receptor was exactly expressed on the porcine ovarian thecal and murine luteal cells and 

the activation of P2X7 decreased cell proliferation and encouraged apoptosis via calcium-

dependent manner (30).  Luteal phase deficiency (LPD) is a majour cause for female 

infertility and nucleotides receptors (P2) can be released of sympathetic nerve ending and 

be influential on   the corpus luteum function. Therefore, exploring of purinergic signaling 

and SNS (ATP/NA) in luteal cells can be having suggestions for treatment of the luteal 

phase inadequacy. In the luteal phase the corpus luteum (CL) is made by the luteinizing 

hormone (LH) function on the mature preovulatory follicle. CL is a transitory endocrine 

gland that is vital for mammalian̕s pregnancy. There is the continual dependency in the 

primate CL on LH/CG/cAMP which seems to trigger luteolysis that can provide by the 

endogenous LH pulses (31). Acquisition of LH receptor (LHR) by preovulatory granulosa 

cells results from estrogen-stimulated and FSH-stimulated transcription of the LHR gene, 
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the actions of which are mediated largely by intracellullar cyclic adenosine monophosphate 

(cAMP).32 

In women with PCOS, infertility could result from the corpus luteum (CL) dysfunctional 

(32).   

Recent developments of the inflammatory triggers in women with PCO show the innate 

immune responses. PCOS is a chronic low-grade inflammation disease (27) which was 

associated by metabolic abnormalities like IR that has a potent link with chronic 

inflammation which were higher in overweight PCO patients (28).       
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