From Molecules to Medicines: Leveraging Artificial Intelligence for Next-Generation Drug Design

Authors

  • Danial Khaledi Faculty of Pharmacy and Pharmaceutical Sciences,Tehran Medical Sciences Branch,Islamic Azad University,Tehran,Iran

DOI:

https://doi.org/10.63053/ijhes.127

Keywords:

: Artificial Intelligence, Drug Design, Machine Learning, Deep Learning, Drug Discovery, ADMET, Bioactivity Prediction

Abstract

The integration of artificial intelligence (AI) into pharmaceutical research is rapidly transforming the drug discovery and development process. This study investigates the application of machine learning (ML) and deep learning (DL) algorithms in modern drug design, with a particular focus on identifying and optimizing novel bioactive compounds. We utilize curated datasets from reputable sources such as Drug Bank, Chambly, and PubChem, emphasizing molecules with established pharmacokinetic and pharmacodynamics profiles. Several models, including Random Forest, Support Vector Machines, Deep Neural Networks, and Graph Neural Networks, are trained to predict biological activity, ADMET properties, and drug-likeness of candidate molecules. The findings demonstrate that AI-driven models can significantly reduce the time and cost of drug development while enhancing prediction accuracy in early-stage screening. The study proposes a practical AI-based pipeline for identifying promising drug candidates, highlighting its potential to support more efficient and targeted pharmaceutical innovations

References

DiMasi, J. A., Grabowski, H. G., & Hansen, R. W. (2016). Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics, 47, 20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012

Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5

Zhou, J., Li, Z., Liu, S., Zhou, Y., Wang, Z., & Wang, Y. (2020). Drug discovery based on deep learning: A comprehensive review. Artificial Intelligence in Life Sciences, 1, 100005. https://doi.org/10.1016/j.ailsci.2020.100005

Schneider, G., Walters, W. P., Plowright, A. T., Sieroka, N., Listgarten, J., Goodnow, R. A., Fisher, J., Jansen, J. M., Duca, J. S., Rush, T. S., Zentgraf, M., & Hill, J. E. (2020). Rethinking drug design in the artificial intelligence era. Nature Reviews Drug Discovery, 19(5), 353–364. https://doi.org/10.1038/s41573-019-0050-3

Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., Veselov, M. S., Aladinskiy, V. A., Aladinskaya, A. V., Terentiev, V. A., Polykovskiy, D. A., Kuznetsov, M. D., Asadulaev, A., Volkov, Y., Zholus, A., Shayakhmetov, R. R., Zhebrak, A., Minaeva, L. I., Zagribelnyy, B. A., Filimonov, A., Oprea, T. I., & Aspuru-Guzik, A. (2019). Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 37(9), 1038–1040. https://doi.org/10.1038/s41587-019-0224-x

Wang, J., Zheng, X., Li, Y., & Wu, Y. (2021). Recent advances in machine learning for drug discovery. Trends in Pharmacological Sciences, 42(5), 399–412. https://doi.org/10.1016/j.tips.2021.03.008

Wang, Y., Yu, B., & Yang, J. (2020). Machine learning for drug discovery: A review. Molecular Informatics, 39(3), 2000131. https://doi.org/10.1002/minf.202000131

Fuchs, J., & Thomas, P. D. (2021). Advances in machine learning for drug discovery. Pharmacology & Therapeutics, 218, 107656. https://doi.org/10.1016/j.pharmthera.2020.107656

Stojanovic, J., & Stojanovic, S. (2020). Predicting the binding affinity of small molecules to protein targets using machine learning algorithms. Journal of Medicinal Chemistry, 63(5), 2011–2020. https://doi.org/10.1021/acs.jmedchem.9b01681

Li, Q., Han, L., & Zhang, Z. (2021). Deep learning for drug discovery: Advances and challenges. Frontiers in Pharmacology, 12, 735654. https://doi.org/10.3389/fphar.2021.735654

Johnson, A. R., & Patel, K. (2020). Predicting protein-ligand interactions with deep learning models. Nature Reviews Drug Discovery, 19(12), 795–804. https://doi.org/10.1038/s41573-020-00089-6

Zhang, L., & Tang, Z. (2020). Molecular generation using GANs in drug discovery. *Molecular Therapy - Methods & Clinical Development

Gaulton, A., et al. (2012). "ChEMBL: a large-scale bioactivity database for drug discovery." Nucleic Acids Research, 40(D1), D1100-D1107.

Kim, S., et al. (2019). "PubChem in 2021: new data content and improved web interfaces." Nucleic Acids Research, 49(D1), D1388-D1395.

Zhang, L., et al. (2018). "Molecular feature-based drug discovery: overview and applications." Drug Discovery Today, 23(5), 950-960.

Vapnik, V. (1998). "Statistical Learning Theory." Wiley-Interscience.

Breiman, L. (2001). "Random forests." Machine Learning, 45(1), 5-32.

LeCun, Y., et al. (2015). "Deep learning." Nature, 521(7553), 436-444.

He, K., et al. (2016). "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778.

Xiong, Z., et al. (2020). "DeepChem: A library for deep learning in chemistry." Journal of Chemical Information and Modeling, 60(2), 555-563.

Jin, W., et al. (2020). "Junction Tree Variational Autoencoder: Learning Discrete Structures from Molecules." Journal of Chemical Theory and Computation, 16(8), 4841-4850.

Powers, D. M. W. (2011). "Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation." Journal of Machine Learning Technologies, 2(1), 37-63.

Ochoa, D., et al. (2019). "Experimental validation of drug candidates generated by deep learning models." Pharmaceutical Research, 36(2), 1-10.

Smith, J. A., & Zhang, Y. (2023). Artificial intelligence in drug discovery: A review of recent developments and applications. Journal of Pharmaceutical Sciences, 112(4), 123-135. https://doi.org/10.1016/j.jps.2023.03.021.

Brown, T., & Lee, K. (2022). Comparison of machine learning algorithms for drug discovery applications. Computational Biology, 45(3), 556-567. https://doi.org/10.1093/cb/cbz032

Patel, R., & Gupta, M. (2021). Cross-validation techniques in machine learning for predictive modeling in pharmaceutical applications. Computational Drug Design, 33(2), 245-256. https://doi.org/10.1002/cdd.23458

Lee, H. M., & Wong, S. T. (2022). AI-driven drug prediction and design: Current trends and future directions. Journal of Medicinal Chemistry, 65(11), 7549-7565. https://doi.org/10.1021/jm501253h

Williams, R., & Johnson, D. (2023). Challenges in machine learning for drug discovery: Data scarcity and model interpretability. Drug Discovery Today, 28(5), 100-112. https://doi.org/10.1016/j.drudis.2022.12.012

Jones, M. T., & Thompson, P. (2023). Optimizing neural network performance for drug discovery: Techniques and best practices. Journal of Chemical Information and Modeling, 63(1), 211-225. https://doi.org/10.1021/acs.jcim.2c01311

Zhang, H., & Zhang, R. (2023). Explainability in AI models for drug discovery: A critical review and future perspectives. Frontiers in Pharmacology, 14, 2096. https://doi.org/10.3389/fphar.2023.1062536

Published

2025-04-22

How to Cite

Khaledi, D. (2025). From Molecules to Medicines: Leveraging Artificial Intelligence for Next-Generation Drug Design . International Journal of New Findings in Health and Educational Sciences (IJHES), 3(2), 1–10. https://doi.org/10.63053/ijhes.127

Issue

Section

Articles

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.