Evaluation of antimicrobial effects of copper–zinc oxide nanocomposites biosynthesized by pome pomegranate peel on some pathogenic bacteria

Authors

  • Rahil Alaghehband Behbahan faculty of medical sciences,Behbahan,Iran
  • Leila Tavanaei* Behbahan faculty of medical sciences,Behbahan,Iran

DOI:

https://doi.org/10.63053/ijhes.134

Keywords:

pathogenic bacteria, biosynthesis, antibacterial activity, copper and zinc oxide nanocomposite

Abstract

Ever since humans started using antibiotics to treat bacterial diseases, resistance to treatment has been observed in bacteria. Studies have shown that by using metals we can take advantage of their antibacterial effects. The purpose of this research is to investigate the antibacterial activities of copper-zinc nanocomposite synthesized by green method (from pomegranate peel extract) on some pathogenic bacteria. Therfore, after green synthesis of copper-zinc oxide nanocomposite, the characteristics of nanocomposite were evaluated using UV-Vis spectrophotometry, X-ray diffraction analysis (XRD), FT-IR analysis, spectrum analysis (EDX) and scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Antibacterial activity of zinc-copper oxide nanocomposite against some pathogenic agents was investigated by well diffusion  and blank disk methods in agar medium. The results of Well diffusion method were better compared to blank disc. It was demonstrated that the maximum inhibitory concentration on Staphylococcus aureus bacteria at concentrations of 100, 250, and 500 µg/ml showed; diameters of the non-growth halo of 17, 16 and 21 mm respectively. In contrast, the minimum inhibitory concentration on Enterococcus faecalis at concentrations of 100, 250, and 500 µg/ml, showed the diameters of the non-growth halo of 10, 12, and 14 mm respectively. The microbicidal properties of nanoparticles were investigated by two methods: the minimum growth inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). In the MIC method, the treatment concentration of 0.78 PPM stopped the growth of Escherichia coli and the treatment concentration of 1.56 PPM stopped the growth of other bacteria. MBC for Escherichia coli was 1.56 and for Pseudomonas aeruginosa, Shigella dysentery and Staphylococcus aureus was 3.12 PPM and had no effect on Enterococcus faecalis. These results showed that copper-zinc oxide nanocomposite synthesized from pomegranate peel inhibited the growth of the above-mentioned bacteria in all concentrations.

References

• Ghahreman, A., 1993, Chromophytes of Iran, Volume Two, First Edition, University Publishing Center, Tehran.

• Aarthye, P., Sureshkumar, M. (2021). Green synthesis of nanomaterials: An overview. Materials Today: Proceedings, 47, 907-913.

• Aiello AE, Larson E. (2003). Antibacterial cleaning and hygiene products as an emerging risk factor for antibiotic resistance in the community. Lancet Infect Diseases, 3(8), 501-6.

• Alexandre, E. M., Silva, S., Santos, S. A., Silvestre, A. J., Duarte, M. F., Saraiva, J. A., & Pintado, M.

• (2019). Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food research international, 115, 167-176.

• Al-Hakkani, M. F. (2020). Biogenic copper nanoparticles and their applications: A review. SN Applied Sciences, 2(3), 1-20.

• Alswat, A. A., Ahmad, M. B., & Saleh, T. A. (2017). Preparation and characterization of zeolitezinc oxide-copper oxide nanocomposite: antibacterial activities. Colloid and Interface Science Communications, 16, 19-24.

• Al-Zoreky NS. (2009). Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. International Jornal of Food Microbiol, 134, 244-8.

• Al-Zubidi, M., Widziolek, M., Court, E. K., Gains, A. F., Smith, R. E., Ansbro, K., & Stafford, G. P. (2019). Identification of novel bacteriophages with therapeutic potential that target Enterococcus faecalis. Infection and immunity, 87(11), 512-19.

• Arnold SR. (2007). Revenge of the killer microbe. Canadian Medical Assosiation Jornal, 177(8), 895-6.

• Ashfaq, M., Verma, N., Khan, S. (2016). Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: a novel potential antibiotic material. Materials Science and Engineering, 59, 938-947.

• Ashtaputrey SD, Ashtaputrey PD, Yelane N. (2017) Green synthesis and characterization of copper nanoparticles derived from Murraya koenigii leaves extract. International Journal of Chemical Pharmaceutical Sciences, 10(3), 1288-1291

• ATMACA S, Kadri G, Cicek R. (1998). The effect of zinc on microbial growth. Turkish Journal of Medical Sciences, 28(6), 595-598.

• Aviram M, Dornfeld L, Rosenblat M, Volkova N, Kaplan M, Coleman R, et al. (2000). Pomegranate juice consumption reduces oxidative stress, atherogenic modification to LDL and platelet aggregation: studies in human and in atherosclerotic apolipoprotein deficient mice. American Jornal of Clinical Nutrition, 71, 1062-76.

• Awwad, A. M., Amer, M. W., Salem, N. M., Abdeen, A. O. (2020). Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chemistry. International, 6(3), 151-159.

• Bhumi G, Savithramma N. (2014). Biological Synthesis of Zinc oxide Nanoparticles from Catharanthus roseus (l.) G. Don. Leaf extract and validation for antibacterial activity. International Journal of Drug Development and Research, 6(1), 208-14.

• Blanc DS, Carrara P, Zanetti G, Francioli P. (2005) Water disinfection with ozone, copper and silver ions, and temperature increase to control Legionella: seven years of experience in a university teaching hospital. Jornal of Hospital Infection, 60(1), 67-72.

• Bonten, M., Johnson, J. R., van den Biggelaar, A. H., Georgalis, L., Geurtsen, J., de Palacios, P. I., & Poolman, J. T. (2021). Epidemiology of Escherichia coli bacteremia: a systematic literature review. Clinical Infectious Diseases, 72(7), 1211-1219.

• Camacho-Flores, B. A., Martínez-Álvarez, O., Arenas-Arrocena, M. C., Garcia-Contreras, R., Argueta-Figueroa, L., De La Fuente-Hernández, J., & Acosta-Torres, L. S. (2015). Copper: synthesis techniques in nanoscale and powerful application as an antimicrobial agent. Journal of Nanomaterials, 20, 15-51.

• Chakraborty, N., Banerjee, J., Chakraborty, P., Banerjee, A., Chanda, S., Ray, K., & Sarkar, J. (2022). Green synthesis of copper/copper oxide nanoparticles and their applications: a review. Green Chemistry Letters and Reviews, 15(1), 187-215.

• Chevalier, S., Bouffartigues, E., Bodilis, J., Maillot, O., Lesouhaitier, O., Feuilloley, M. G., & Cornelis, P. (2017). Structure, function and regulation of Pseudomonas aeruginosa porins. Federation of European Microbiology Societies microbiology reviews, 41(5), 698-722.

• Coppo, E., Marchese, A. (2014). Antibacterial activity of polyphenols. Current pharmaceutical biotechnology, 15(4), 380-390.

• Dahham SS, Ali MN, Tabassum H, Khan M. (2010) Studies on Antibacterial and Antifungal Activity of Pomegranate (Punica granatum L.). American-Eurasian, 9 (3), 273 - 81.

• Danae L, Lilian W. (2009). Anti-Listeria monocytogenes activity of heat-treated lyophilized pomegranate juice in media and in ground top round beef. Jornal of Food Protect, 72 (12), 2508-16.

• Dhanasegaran, K., Djearamane, S., Liang, S. X. T., Wong, L. S., Kasivelu, G., Lee, P. F., & Lim, Y. M. (2021). Antibacterial properties of zinc oxide nanoparticles on Pseudomonas aeruginosa (ATCC 27853).

• Scientia Iranica, 28(6), 3806-3815.

• Dhand, C., Dwivedi, N., Loh, X. J., Ying, A. N. J., Verma, N. K., Beuerman, R. W., & Ramakrishna, S. (2015). Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. The Royal Society of Chemistry Advances, 5(127), 105003-105037.

• Din, M. I., Rehan, R. (2017). Synthesis, characterization, and applications of copper nanoparticles. Analytical Letters, 50(1), 50-62.

• Din, M. I., Arshad, F., Hussain, Z., Mukhtar, M. (2017). Green adeptness in the synthesis and stabilization of copper nanoparticles: catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nanoscale research letters, 12(1), 1-15.

• Duffy, L. L., Osmond-McLeod, M. J., Judy, J., King, T. (2018). Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food control, 92, 293-300.

• Ealia, S. A. M., Saravanakumar, M. P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. In IOP conference series: materials science and engineering, 263(3), 032019.

• Faiz, U., Butt, T., Satti, L., Hussain, W., & Hanif, F. (2011). Efficacy of zinc as an antibacterial agent against enteric bacterial pathogens. Journal of Ayub Medical College Abbottabad, 23(2), 18-21.

• Fuku X, Diallo A, Maaza M. (2016). Nanoscaled electrocatalytic optically modulated ZnO nanoparticles through green process of Punica granatum L. and their antibacterial activities. International Journal of Electrochemistry, 17(1), 14-52.

• Ghasemian A, Mehrabian S, Majd A. (2006). Peel extracts of two Iranian cultivars of pomegranate (Punica granatum) have antioxidant and antimutagenic activities. Pakistan Jornal of Biological Sciences, 9, 1402-5.

• Gomes, T. A., Elias, W. P., Scaletsky, I. C., Guth, B. E., Rodrigues, J. F., Piazza, R. M., & Martinez, M. B. (2016). Diarrheagenic escherichia coli. brazilian journal of microbiology, 47, 3-30.

• Guan, Z., Ying, S., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 18, 102336.

• Gurgur, E., Oluyamo, S. S., Adetuyi, A. O., Omotunde, O. I., & Okoronkwo, A. E. (2020). Green synthesis of zinc oxide nanoparticles and zinc oxide–silver, zinc oxide–copper nanocomposites using Bridelia ferruginea as biotemplate. Applied Sciences, 2(5), 1-12.

• Halimeh, F. B., Rafei, R., Osman, M., Kassem, I. I., Diene, S. M., Dabboussi, F., & Hamze, M. (2021). Historical, current, and emerging tools for identification and serotyping of Shigella. Brazilian Journal of Microbiology, 52(4), 2043-2055.

• Hawkey PM, Jones AM. (2009). The changing epidemiology of resistance. Jornal of Antimicrob Chemother; 64, 3-10.

• Hawkey PM. (2008). The growing burden of antimicrobial resistance. Jornal of Antimicrob Chemother, 62, 1-9.

• Hosseini-Sarvari, Mona, and Fatemeh Moeini. (2014). "Nano copper (I) oxide/zinc oxide catalyzed N-arylation of nitrogen-containing heterocycles with aryl halides and arylboronic acids in air." The Royal Society of Chemistry advances, 4(14), 7321-7329.

• Hosseinkhani P, Zand AM, Imani S, Rezayi M, RezaeiZarchi S. (2011). Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium Shigella dysenteriae (type 1). International Journal of Nano Dimension, 1(4), 279 -85 .

• Hoseinpour, V., Ghaemi, N. (2018). Green synthesis of manganese nanoparticles: Applications and future perspective–A review. Journal of Photochemistry and Photobiology B: Biology, 189, 234-243.

• Hou, J., Wu, Y., Li, X., Wei, B., Li, S., & Wang, X. (2018). Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere, 193, 852-860.

• Ifeanyichukwu, U. L., Fayemi, O. E., Ateba, C. N. (2020). Green synthesis of zinc oxide nanoparticles from pomegranate (Punica granatum) extracts and characterization of their antibacterial activity. Molecules, 25(19), 4521.

• Ijaz, I., Gilani, E., Nazir, A., Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13(3), 223-245.

• Ismail, N. A., Shameli, K., Jusoh, N. C., Ali, R. R., Sukri, S. M., & Isa, E. M. (2021). Preparation of Copper Nanoparticles by Green Biosynthesis Method: A Short Review. In IOP Conference Series: Materials Science and Engineering, 1051 (1), 012084

• Jain A, Dixit P. (2008). Multidrug-resistant to extensively drug resistant tuberculosis: what is next? Jornal of Biosci, 33(4), 605-16.

• Jamkhande, P. G., Ghule, N. W., Bamer, A. H., Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of drug delivery science and technology, 53, 101174.

• Jan, T., Azmat, S., Mansoor, Q., Waqas, H. M., Adil, M., Ilyas, S. Z., & Ismail, M. (2019). Superior antibacterial activity of ZnO-CuO nanocomposite synthesized by a chemical Co-precipitation approach. Microbial pathogenesis, 134, 103579.

• Kaderides, K., Kyriakoudi, A., Mourtzinos, I., Goula, A. M. (2021). Potential of pomegranate peel extract as a natural additive in foods. Trends in Food Science & Technology, 115, 380-390.

• Karikalan, N. (2018). Synthesis and charaterization of copper nanoparticles and evaluation of antibacterial activity. Rasayan Jornal of Chemistry, 11, 1451-1457.

• Ketabchi M, Iessazadeh Kh, Massiha A. (2017). Evaluate the inhibitory activity of ZnO nanoparticles against standard strains and isolates of Staphylococcus aureus and Escherichia coli isolated from food samples. Journal of Food Microbioligy, 4(1), 63-74.

• Kumari, S., Sarkar, L. (2021). A Review on Nanoparticles: Structure, Classification, Synthesis & Applications. Journal of Scientific Research, 65(8), 14-19.

• Lansky EP, Newman RA. (2007). Punica granatum(pomegranate) and its potential for prevention and treatment of inflammation and cancer. Jornal of Ethnopharmacol, 109(2), 177-206.

• Letchumanan, D., Sok, S. P., Ibrahim, S., Nagoor, N. H., & Arshad, N. M. (2021). Plant-based biosynthesis of copper/copper oxide nanoparticles: an update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules, 11(4), 564.

• Livermore DM. (2003). Bacterial resistance: origins, epidemiology, and impact. Clinical Infectious Diseases, 36, 11-23.

• Li Y, Guo C, Yang J, Wei J, Xu J, Cheng S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chemistry, 96, 254-60.

• Magi, G., Capretti, R., Paoletti, C., Pietrella, M., Ferrante, L., Biavasco, F., & Facinelli, B. (2003). Presence of a vanA-carrying pheromone response plasmid (pBRG1) in a clinical isolate of Enterococcus faecium. Antimicrobial agents and chemotherapy, 47(5), 1571-1576.

• Mali, S. C., Dhaka, A., Githala, C. K., Trivedi, R. (2020). Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnology Reports, 27, 518.

• Marino, A., Munafò, A., Zagami, A., Ceccarelli, M., Di Mauro, R., Cantarella, G., & Cacopardo, B. (2021). Ampicillin plus ceftriaxone regimen against enterococcus faecalis endocarditis: A literature review. Journal of Clinical Medicine, 10(19), 4594.

• Martos MV, López JF, Álvarez JAP. (2010). Pomegranate and its many functional components as related to human health: a review. Comprehens Reviews in Food Science and Food Safety, 9(6), 635-54.

• Mezzaroba, L., Alfieri, D. F., Simão, A. N. C., Reiche, E. M. V. (2019). The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology, 74, 230-241.

• Mughal, B., Zaidi, S. Z. J., Zhang, X., Hassan, S. U. (2021). Biogenic nanoparticles: Synthesis, characterisation and applications. Applied Sciences, 11(6), 2598.

• Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., Issaabadi, Z. (2019). An introduction to nanotechnology. In Interface science and technology, 28, 1-27.

• Nicolae-Maranciuc, A., Chicea, D., Chicea, L. M. (2022). Ag Nanoparticles for Biomedical Applications Synthesis and Characterization—A Review. International Journal of Molecular Sciences, 23(10), 5778.

• Park, S., Ronholm, J. (2021). Staphylococcus aureus in agriculture: lessons in evolution from a multispecies pathogen. Clinical Microbiology Reviews, 34(2), 182-20.

• Pérez, C., Zúñiga, T., Palavecino, C. E. (2021). Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagnosis and Photodynamic Therapy, 34, 102285.

• Pirzadeh, M., Caporaso, N., Rauf, A., Shariati, M. A., Yessimbekov, Z., Khan, M. U., & Mubarak, M. S. (2021). Pomegranate as a source of bioactive constituents: A review on their characterization, properties and applications. Critical reviews in food science and nutrition, 61(6), 982-999.

• Qahir, A., Khan, N., Hakeem, A., Kamal, R. (2021). The antioxidant, antimicrobial, and clinical effects with elemental contents of pomegranate (Punica granatum) peel extracts: A review. Baghdad Journal of Biochemistry and Applied Biological Sciences, 2(1), 21-28.

• Rajeshkumar, S., Menon, S., Kumar, S. V., Tambuwala, M. M., Bakshi, H. A., Mehta, M., & Dua, K. (2019). Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. Journal of Photochemistry and Photobiology B: Biology, 197, 111531.

• Read, S. A., Obeid, S., Ahlenstiel, C., Ahlenstiel, G. (2019). The role of zinc in antiviral immunity. Advances in nutrition, 10(4), 696-710.

• Rohmer, C., Wolz, C. (2021). The role of hlb-converting bacteriophages in Staphylococcus aureus host adaption. Microbial Physiology, 31(2), 109-122.

• Rudramurthy, G. R., Swamy, M. K., Sinniah, U. R., & Ghasemzadeh, A. (2016). Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules, 21(7), 836.

• Sajjad, M., Ullah, I., Khan, M. I., Khan, J., Khan, M. Y., & Qureshi, M. T. (2018). Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results in Physics, 9, 1301-1309.

• Santhoshkumar, J., Agarwal, H., Menon, S., Rajeshkumar, S., & Kumar, S. V. (2019). A biological synthesis of copper nanoparticles and its potential applications. In Green Synthesis, Characterization and Applications of Nanoparticles, 14, 199-221

• Semaltianos, N. G. (2010). Nanoparticles by laser ablation. Critical reviews in solid state and materials sciences, 35(2), 105-124.

• Siddiqi, K. S., Husen, A. (2018). Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale research letters, 13(1), 1-13.

• Singh, B., Singh, J. P., Kaur, A., Singh, N. (2019). Antimicrobial potential of pomegranate peel: A review. International Journal of Food Science & Technology, 54(4), 959-965.

• Singh, P., Kim, Y. J., Zhang, D., Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in biotechnology, 34(7), 588-599.

• Thi, M. T. T., Wibowo, D., Rehm, B. H. (2020). Pseudomonas aeruginosa biofilms. International journal of molecular sciences, 21(22), 8671.

• Thunugunta, T., Reddy, A. C., DC, L. R. (2015). Green synthesis of nanoparticles: current prospectus. Nanotechnology Reviews, 4(4), 303-323.

• Waris, A., Din, M., Ali, A., Ali, M., Afridi, S., Baset, A., & Khan, A. U. (2021). A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorganic Chemistry Communications, 123, 108369.

• Wu, W., Jin, Y., Bai, F., & Jin, S. (2015). Pseudomonas aeruginosa. In Molecular medical microbiology, 25, 753-767.

• Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and environmental microbiology, 77(7), 2325-2331.

• Yair, Y., Gophna, U. (2018). Pandemic bacteremic Escherichia coli strains: evolution and emergence of Drug-Resistant pathogens. Escherichia coli, a versatile pathogen, 40, 163-180.

• Yousefi E, Rafienia M, Fazeli H, Zaman Kasai M. (2013). In-Vitro Effects of Copper Nanoparticles on Common Bacterial Strains Implicated in Nosocomial Infections. Jornal of Isfahan Medical School, 31(240), 830-42.

• Yunfeng Li, Changjiang Guo, Jijun Yang, Jingyu Wei, Jing Xu, & Shuang Cheng. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Jornal of Food Chemistry, 96, 254- 260.

• Zaidi, M. B., Estrada-García, T. (2014). Shigella: a highly virulent and elusive pathogen. Current tropical medicine reports, 1(2), 81-87.

Published

2025-05-13

How to Cite

Alaghehband, R., & Tavanaei*, L. (2025). Evaluation of antimicrobial effects of copper–zinc oxide nanocomposites biosynthesized by pome pomegranate peel on some pathogenic bacteria. International Journal of New Findings in Health and Educational Sciences (IJHES), 3(2), 73–96. https://doi.org/10.63053/ijhes.134

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.